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 Problem statement

 Hypothesis testing

 Chi-square

 Methods based on empirical distribution 
function

 Other tests

 Power studies

 Running several tests

 Tests for multi-dimensional data
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➢ We have a probability model

➢ We have data from an experiment

➢ Does the data agree with the probability 
model? 
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Good Model? Or maybe needs more?
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F: cumulative distribution function

𝐻0: 𝐹 = 𝐹0

Usually more useful:

𝐻0: 𝐹 ∊ ℱ0

ℱ0 a family of distributions, indexed by 
parameters. 
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 Type I error: reject true null hypothesis 
 Type II error: fail to reject false null hypothesis

A: HT has to have a true type I error probability no higher 
than the nominal one (α)

B: probability of committing the type II error (β) should be as 
low as possible (subject to A)

Historically A was achieved either by finding an exact test or 
having a large enough sample.

p value = probability to reject true null hypothesis when 
repeating the experiment and observing value of test statistic 
or something even less likely.

If method works p-value has uniform distribution.
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 Note above: no alternative hypothesis 𝐻1
 Different problem:

 𝐻0: 𝐹 = 𝑓𝑙𝑎𝑡 vs 𝐻0: 𝐹 = 𝑙𝑖𝑛𝑒𝑎𝑟
 → model selection
 Usually better tests: likelihood ratio test, F 

tests, BIC etc.
 Easy to confuse: all GOF papers  do power 

studies, those need specific alternative.
 Our question: is F a good enough model for 

data? We want to guard against any 
alternative.
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Not again …

Actually no, GOF equally important to both 
(everybody has a likelihood)

Maybe more so for Bayesians, no non-
parametric methods.

But GOF is frequentist. Bayesian GOF would 
need prior on space of probability 
distributions.
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Theory: die is fair (𝑝𝑖 = Τ1 6)

Experiment: roll die 1000 times

If die is fair one would expect 1000*1/6 = 167 1’s, 2’s 
and so on

Data:

➢ Is this a good fit?

1 2 3 4 5 6

187 168 161 147 176 161
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Sir Karl Pearson (1900), 

“On the criterion that a given system 
of deviations from the probable in 
the case of correlated system of 
variables is such that it can be 
reasonably supposed to have arisen 
from random sampling”, Phil. Mag (5) 
50, 157-175
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Uses as measure of deviations

𝑋2=σ𝑖=1
𝑘 (𝑂𝑖−𝐸𝑖)

2

𝐸𝑖

k: number of classes / categories / bins

𝑂𝑖 : observed counts

𝐸𝑖 : expected counts

Agreement is bad if 𝑋2 is large

𝑋2~χ2(𝑘 − 1)
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Is 5.72 “large”?

If die is fair and rolled 1000 times, how large 
would 𝑋2 typically be?

1 2 3 4 5 6

O 187 168 161 147 176 161

E 167 167 167 167 167 167

𝑋2 =
(187 − 167)2

167
+. . +

161 − 167 2

167
= 5.72
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So 𝑋2 has a chi square distribution with k-1 degrees of 
freedom (k=number of categories/bins)

Here: 95𝑡ℎ percentile of χ2 5 is 11.07

So our 𝑋2 = 5.72 is not unusually large, die is 
(reasonably) fair.

The derivation of the distribution of 𝑋2 uses several 
approximations, so this needs a sufficiently large 
sample size. But how large does it have to be?

Famous answer: 𝐸𝑖 ≥ 5 for all i

William G. Cochran  The [chi-squared] test of goodness 
of fit. Annals of Mathematical Statistics 1952; 25:315–
345.

Seems to have picked 5 for no particular reason. Later 
research showed this is quite conservative. Test 
generally works fine if 𝐸𝑖 ≥ 5 for most i and no 𝐸𝑖 < 1.
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Neyman, Jerzy; Pearson, 
Egon S. (1933). "On the 
Problem of the Most Efficient 
Tests of Statistical 
Hypotheses". Philosophical 
Transactions of the Royal 
Society A:. 231 (694–706)

In a test of a simple vs 
simple hypotheses 
likelihood ratio test is most 
powerful 

In the case of a multinomial 
also leads to 𝑋2!
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Fisher’s question: does data agree with theory?

Neyman-Pearson’s question: should one reject the null 
hypothesis in favor of some specific alternative?

Main advantage of Neyman-Pearson style test: can 
decide which method is better (aka has a higher power)

Today’s procedure is a hybrid of both

GOF testing much closer to Fisherian significance 
testing, except when we have a specific alternative in 
mind, but then it’s not GOF!
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 Box, G. E. P. (1979), "Robustness in the 
strategy of scientific model building", in 
Launer, R. L.; Wilkinson, G. N. (eds.), 
Robustness in Statistics, Academic Press, 
pp. 201–236.

 In GOF testing the null hypothesis is almost 
certainly wrong, but is it so wrong that we 
reject it (at the given sample size)?

 If not it should be useful! What useful means 
depends on the context. (for example testing 
at 5σ vs 3σ levels). 
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Samuel S. Wilks: “The 
Large-Sample 
Distribution of the 
Likelihood Ratio for 
Testing Composite 
Hypotheses”, The 
Annals of Mathematical 
Statistics, Vol. 9, No. 1 
(Mar., 1938), pp. 60-62

Λ : Likelihood Ratio

−2𝑙𝑜𝑔Λ ≅ 𝑋2 ~χ2 𝑘 − 1
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Not 
𝐻0: 𝐹 = 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) (simple hypothesis)

but 
𝐻0: 𝐹 = 𝑁𝑜𝑟𝑚𝑎𝑙 (composite hypothesis)

Idea: find estimates of parameters, use those. 

Any change in test? Pearson said no.

In 1915 Greenwood and Yule publish an analysis of 
a 2x2 table and note that there is a problem.

In 1922, 1924 and 1926 Sir Karl Fisher published 
several papers showing that Pearson was wrong.
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If m parameters are estimated 
𝑋2~χ2(𝑘 − 1 −𝑚)

The 1922 paper is the first ever to use 
the term “degrees of freedom”.

In some ways this is an astonishing 
result: it does not seem to matter how 
well one can estimate the parameter 
(aka what the sample size is)

Does it matter what method of 
estimation is used? Yes, and it has to 
be minimum chi-square!

Except these days everyone is using 
maximum likelihood, and then this 
result can be wrong

Pearson didn’t acknowledge Fisher 
was right until 1935!
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Question used to be: which converges fastest 
to χ2?

But these days null distribution can be found 
most easily using Monte Carlo simulation!
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function(B=1e4) {

crit95<-c(10.95, 10.97, 10.95, 11.08, 11.00)

E<-rep(1,6)/6*1000

TS.Sim<-matrix(0,B,5)

for(i in 1:B) {

O<-table(sample(1:6,size=1000,replace=T,

prob=c(1.25,1,1,1,1,1)))

TS.Sim[i,1]<-sum( (O-E)^2/E)

TS.Sim[i,2]<-2*sum(O*log(O/E))

TS.Sim[i,3]<-4*sum( (sqrt(O)-sqrt(E))^2)

TS.Sim[i,4]<-sum( (O-E)^2/O)    

TS.Sim[i,5]<-2*sum(E*log(E/O))

}

power<-rep(0,5)

for(i in 1:5) power[i]<- s    
sum(TS.Sim[,i]>crit95[i])/B

power

}

Simulated loaded die has a slightly higher 

probability for a “1”.
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Usual question: is our theory a good enough model 
for the data?

We also should worry about: is our model better 
than it should be?

➢ Overfitting!

➢ Occam’s Razor: Numquam ponenda est 
pluralitas sine necessitate

➢ Here: the best model is the most basic one that 
works (aka fits the data)
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Need to bin the data

In principle any binning is ok, as long as 
expected counts are not to low

Two obvious questions: 

1) What kind of bins?

2) How many bins?
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Equi-distant vs Equi-probable
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Most textbooks suggest equi-probable is 
better, but this isn’t really true.

One advantage: E=n/k >> 5 for all bins, no 
need to adjust binning

Equi-probable bins can be found easily as 
quantiles of distribution or as quantiles of data
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Many textbook answers: 

D’Agostini and Stephens 2𝑛2/5

Sturge’s Rule 1 + 𝑙𝑜𝑔2𝑛

Mann and Wald 4[
2(𝑛+1)2

𝑐2
]1/5

And many more

But: really depends on case:
Example: 𝐻0: 𝑋~𝑈 0,1 𝑣𝑠 𝐻𝑎: 𝑋~𝐿𝑖𝑛𝑒𝑎𝑟
Optimal: k=2!

Formulas above were derived for the purpose of density estimation, but a 
number of bins that is good for density estimation (aka histogram) need not 
be good for gof testing.

My own studies show that a small number, say less than 10, independently 
of n is usually best.
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EDF: Empirical Distribution Function

෠𝐹 𝑥 → 𝐹 𝑥 uniformly (Glivenko-Cantelli lemma)

Basic idea for test:

D: distance measure on function space
Ψ: weight function
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Theorem: (Probability Integral Transform)

Let X be a continuous random variable with 
distribution function F, then the random 
variable Y = F(X) has a uniform (0,1) 
distribution.

Consequence: D is distribution free, aka does 
not depend on F.

One table to rule them all!

Except this does not work if parameters are 
estimated from data!
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𝐾𝑆 = 𝑚𝑎𝑥 ෠𝐹 𝑥 − 𝐹 𝑥 ; 𝑥 =

𝑚𝑎𝑥
𝑖

𝑛
− 𝐹 𝑋(𝑖) , 𝐹 𝑋(𝑖) −

𝑖 − 1

𝑛

Kolmogorov A (1933). "Sulla 
determinazione empirica di una 
legge di distribuzione". G. Ist. Ital. 
Attuari. 4: 83–91.

Smirnov N (1948). "Table for 
estimating the goodness of fit of 
empirical distributions". Annals of 
Mathematical Statistics. 19: 279–
281
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Anderson-Darling

Anderson, T. W.; Darling, D. A. (1952). "Asymptotic theory of certain "goodness-of-fit" criteria based on stochastic processes".
Annals of Mathematical Statistics. 23: 193–212.

Cramer-vonMises

Cramér, H. (1928). "On the Composition of Elementary Errors". Scandinavian Actuarial Journal. 1928 (1): 13–74. 
doi:10.1080/03461238.1928.10416862.

von Mises, R. E. (1928). Wahrscheinlichkeit, Statistik und Wahrheit. Julius Springer.

Watson, G.S. (1961) "Goodness-Of-Fit Tests on a Circle", Biometrika, 48 (1/2), 109-114

And more… 

Modern theory based on convergence of ෠𝐹 to Gaussian process
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None of these allows estimation of parameters 
except in some special cases: 

𝐻0: 𝑋~𝑁𝑜𝑟𝑚𝑎𝑙
Hubert Lilliefors (1967), "On the Kolmogorov–
Smirnov test for normality with mean and variance 
unknown", Journal of the American Statistical 
Association, Vol. 62. pp. 399–402.

𝐻0: 𝑋~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙
Hubert Lilliefors (1969), "On the Kolmogorov–
Smirnov test for the exponential distribution with 
mean unknown", Journal of the American Statistical 
Association, Vol. 64 . pp. 387–389.

But then again, just find null distribution via Monte 
Carlo!
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 Estimate parameters from data (and you can 

use any method you like!) ↦ ෠θ𝐷
 Find test statistic 𝑇𝐷 for data, using 𝐹(. |෠θ𝐷).

 Simulate new data set from 𝐹(. |෠θ𝐷), find its 

parameter estimates ෠θ1, and its test statistic 

𝑇1 using 𝐹(. |෠θ1)

 Do this (say) 1000 times. 

 P-value = % {𝑇𝑖> 𝑇𝐷} (if large T is bad)

 Parametric bootstrap
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Plot quantiles 
of F vs sample 
quantiles

If F is correct 
model, points 
form a straight 
line
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Again Probability Integral Transform:
𝑋~𝐹 → 𝐹(𝑋)~𝑈[0,1]

𝑈1, . . , 𝑈𝑛 𝑖𝑖𝑑 𝑈 0,1

Order Statistic              𝑈(1) <. . . < 𝑈(𝑛)

𝑈(𝑘)~𝐵𝑒𝑡𝑎 𝑘, 𝑛 − 𝑘 + 1

Find pointwise confidence intervals from quantiles of Beta 
distribution

Turn into simultaneous confidence band by adjusting 
nominal confidence level via MC.

35



Sivan Aldor-Noima, Lawrence D. 
Brown, Andreas Buja , Robert A. 
Stine and Wolfgang Rolke, “The 
Power to See: A New Graphical 
Test of Normality”, The 
American Statistician (2013), 
Vol 67/4

Andreas Buja, Wolfgang Rolke
“Calibration for Simultaneity: 
(Re) Sampling Methods for 
Simultaneous Inference with 
Applications to Function 
Estimation and Functional 
Data”, Technical Report, 
Wharton School of Business, 
Univ. of Pennsylvania

R routines: 
http://academic.uprm.edu/wrol
ke/research/publications.htm
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Old idea – goes back to Neyman (1937) – but 
with some recent improvements.

Basic idea: embed density f in family of 
densities 𝑔𝑘 indexed by some parameter 
vector Θ = (θ1, . . , θ𝑘) which includes true density 
for some k and such that 

𝐻0: 𝑡𝑟𝑢𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑠 𝑓 ↔ 𝐻0: Θ = 0
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ℎ𝑗 should be orthonormal family of 
functions, i.e.

optimal choice of ℎ𝑗 depends on f, so 
different tests for different null hypotheses.
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Typical choices for ℎ𝑗 : 

Legendre Polynomials, Fourier series, 

ℎ𝑗(x)= 2 cos 𝑗π𝑥 , Haar functions,  ….

Basics of the test:

Interesting feature: partial tests θ1, . . , θ𝑚 = 0 for 
m<k can give insight into HOW null is wrong.
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Not so well known, but often have good power. 

Jin Zhang, “Powerful Goodness-of-Fit Tests Based on the Likelihood Ratio”, Journal of 
the Royal Statistical Society. Series B (Statistical Methodology), Vol. 64,No. 2 (2002), 
pp. 281-294

The distributions of all three test statistics need to be found via MC. 
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 Tests based on moments

 Tests specific for a distribution (Normal: 
more than 30 tests)

 A good place to start: “Comparing 
Distributions”, Olivier Thais, Springer
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𝐻0 ∶ 𝐹 =U[0,1] ; n=1000, α = 0.05

In all cases highest power ≈80-90%
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It’s a mess!
Any one method 
might have good 
power in one case 
and bad power in 
another.
Chi-square with 
large number of 
bins always bad.
Chis-square with 
low number of bins 
better but not 
great.
KS at least 
sometimes very 
bad.
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“Simultaneous Goodness-of-Fit Testing”, Rolke 
(2020): 21 such studies 
(https://arxiv.org/abs/2007.04727).

Most methods sometimes good, sometimes bad.

Chi-square and KS: never very good.

Chi-square with large number of bins (>>10): 
horrible!

AD and Zhang’s 𝑍𝐶 generally quite good.
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Do several tests!

If none of them reject the model, it can’t be 
that bad.

But: look-elsewhere-effect

Take a couple of looks effect?

↦ simultaneous inference
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Say we perform k tests, each at the α level, and 
assume model is good. Let 𝑇𝑖 be test i rejects 
null, then:

P(at least one test rejects null) =
1 − Prob(𝑇𝑖

𝑐; 𝑖 = 1, . . , 𝑘)

Easy if tests are independent: 

1 − Prob 𝑇𝑖
𝑐; 𝑖 = 1, . . , 𝑘 =

1 − ∏Prob 𝑇𝑖
𝑐 =

1 − ∏ 1 − α =1 − (1 − α)𝑘

↦ Bonferroni correction
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But our tests are not independent, they all use 
the same data.

We can still find correction using simulation!

Example: 𝐻0: 𝑋~𝑈 0,1 , use 9 tests:
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 R package simgof (available from me)
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In principle very useful, but:

Curse of Dimensionality (R. Bellman)

Example: 𝐻0: (𝑋1, . . , 𝑋𝑑)~𝑈[0,1]
𝑑

We want to do a  χ2 test and we want 10 bins in each dimension. 
What n do we need to get 𝐸 ≥ 5?

d=1: 𝐸 = Τ𝑛 10 ≅ 5 → 𝑛 ≅ 50
d=2: 𝐸 = Τ𝑛 102 ≅ 5 → 𝑛 ≅ 500

d=3: 𝐸 = Τ𝑛 103 ≅ 5 → 𝑛 ≅ 5000
…

d=10: 𝐸 = Τ𝑛 1010 ≅ 5 → 𝑛 ≅ 50 billion

Some other tests not so extreme, but all of them suffer to some 
degree from the curse.
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Some methods do this 
automatically.

Destroys any analytic 
null distribution.
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Under null 
hypothesis 
transformed 
spacings have 
uniform 
distributions.

Closely related to 
nearest-neighbors
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 Hyperspheres in 𝑅𝑑

 Bickel, P.J., Breiman. L (1983) Sums of 
functions of nearest neighbor 
distances, limit theorems and 
goodness of fit test, Ann. Prob. 11, 
185-214.

 Schilling. M (1983), Goodness of Fit 
Testing in Rm Based on the Weights 
Empirical Distribution of Certain 
Nearest Neighbor Statistics, Ann. ff 
Statistics 11, 1-12. 

 Schilling. M (1983), An infinite-
dimensional approximation to the 
nearest neighbor goodness-of-fit 
tests, Ann. Of Statistics 11, 13-24 

 Hall. P, (1986) On Powerful Distribution 
Tests Based on Sample Spacings, J. of 
Multivariate Analysis 19, 201-224.

56



Ilya Narsky (2003), Estimation of Goodness-of-Fit in 
Multidimensional Analysis Using Distance to Nearest 
Neighbor, arXiv:physics/0306171

Presented at Phystat 2003 – SLAC

Based on Rosenblatt transform  and Monte Carlo.  

Rosenblatt transform imposes artificial order on 
variables. In d dimensions there are d! ways to go.
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Analytic derivation of null distribution also based 
on Rosenblatt transform, same issue of order.

These days test statistic can be found directly, but 
needs a lot of calculations. (max not necessarily at 
data points as in 1D).  

𝑅2: Sample size n↦ 𝑛2/4 function evaluations

Simple Idea: Just look at data points ↦ fKS (under 
current investigation..)
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 Lopes.RHC, Reid. I and Hobson. PR (2007) The two-dimensional 
Kolmogorov-Smirnov test. Proc. XI Int. Workshop on Advanced 
Computing and Analysis Techniques in Physics Research April 23-
27.

 Fasano, G and Franceschini. A (1987) A multidimensional version of 
the Kolmogorov-Smirnov test, Mon. Not R ast. Soc 225, 155-170

 Lopes. RHC et al (2008), Computationally efficient algorithms for the 
two-dimensional Kolmogorov–Smirnov test, J. Phys. Conf. Ser, 119

 Peacock. JA (1983) Two-dimensional goodness-of-fit testing in 
astronomy, Mon. Not. R. Astron. Soc. 202 615-627
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Data: 𝒙1, . . , 𝒙𝑛
Data simulated from F : 𝒕1, . . , 𝒕𝑚

𝜑 =
1

𝑛2
෍

𝑖<𝑗

𝑅(∥ 𝒙𝑖 − 𝒙𝑗 ∥) −
1

𝑛𝑚
෍

𝑖,𝑗

𝑅 ∥ 𝒕𝑖 − 𝒙𝑗 ∥

R correlation function:

𝑅𝑘 𝑟 =
1

𝑟𝑘
𝑅𝑙 𝑟 = − log 𝑟

𝑅𝑠 𝑟 = exp(−𝑟2/(2𝑠2)
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In principle easy, but:

Choice of k?

Same basis functions in different 
dimensions?

For good power basis functions need to 
“match” F.

61



Characteristic function:
φ 𝑡1, , . . , 𝑡𝑑 = 𝐸 exp 𝑖𝑡1𝑋1+. . +𝑖𝑡𝑑𝑋𝑑

Empirical characteristic function:

φ𝑛 𝑡1, , . . , 𝑡𝑑 =
1

𝑛
෍exp 𝑖𝑡1𝑥1𝑖+. . +𝑖𝑡𝑑𝑥𝑑𝑖

Test based on the difference.

But: what d? what 𝑡1, . . , 𝑡𝑑?

Yanqin Fan, (1997), Goodness-of-Fit Tests for a 
Multivariate Distribution by the Empirical Characteristic 
Function, Journal of Multivariate Analysis, 62, 36-63
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Sample Size 100, 10000 runs for null 
distribution, 1000 runs for power
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General Comments:

GOF tests beyond 2 or 3 dimensions unlikely to 
be very powerful.

At the very least will require gigantic data sets 
to get reasonable power.

Still a wide-open problem!
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Often data has special features that need to be 
taken into account

Example: High Energy Physics

1) Data is truncated

2) Sample size is random

3) Data is binned
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Data in High Energy Physics is always truncated 
to a finite interval.

Care needs to be taken with normalization (aka 

∞−׬
∞

𝑓 𝑥 𝑑𝑥 = 1)

Statisticians usually will assume this is done 
automatically and at all times.
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In HEP experiments sample size is not fixed a-
priori but is a consequence of the run time

n~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ)

If n is fixed: 𝑁1, . . , 𝑁𝑘 ~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝1, . . , 𝑝𝑘)

But if n is Poisson
𝑁𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ𝑝𝑖) 𝑎𝑛𝑑 𝑁1, . . , 𝑁𝑘 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡!

(Theory of Marked Poisson processes)

Consequence: 𝑋2~χ2(𝑘 − 𝑚) (not k-m-1)

Not an issue if null distribution is found via MC
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Data in HEP is often already binned for various 
reasons, for example detector resolution

Still need to consider rebining for chi square 
tests.

How about Kolmogorov-Smirnov?

𝐾𝑆 = 𝑚𝑎𝑥
𝑖

𝑛
− 𝐹 𝑋(𝑖) , 𝐹 𝑋(𝑖) −

𝑖 − 1

𝑛

But we only know 𝑏𝑖 < 𝑋(𝑖) < 𝑏𝑖+1
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Obvious answer: 𝑥𝑖 =
𝑏𝑖+𝑏𝑖+1

2
midpoint

Better answer: spread out 𝑁𝑖 points in (𝑏𝑖 , 𝑏𝑖+1)

uniformly.

Best answer: spread out 𝑁𝑖 points in (𝑏𝑖 , 𝑏𝑖+1)

according to F.

Can be quite slow (requires finding quantiles of 
F, solve many non-linear equations), in practice 
spreading them uniformly almost as good.
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 GOF testing should be part of (most) statistical 
analysis.

 Any one test can have low power, so do several.

 Chi-square with large number of bins has very 
low power.

 Tests for multi-dimensional distributions are not 
great and likely has low power for much more 
than two dimensions.

 THANKS!
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