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The Archetypical Statistics Problem:

> We have a probability model

» We have data from an experiment

» Does the data agree with the probability
model?




What’s the density?

Density
2 5
Density

Good Model? Or maybe needs more?




General Problem Statement

F: cumulative distribution function
Hy:F = F,
Usually more useful:
Hy:F € F,

F, a family of distributions, indexed by
parameters.



Hypothesis Testing Basics

» Type | error: reject true null hypothesis
» Type Il error: fail to reject false null hypothesis

A: HT has to have a true type | error probability no higher
than the nominal one (x)

B: probabilitg of committing the type Il error (B) should be as
low as possible (subject to A)

Historically A was achieved either by finding an exact test or
having a large enough sample.

p value = probability to reject true null hypothesis when
repeating the experiment and observing value of test statistic
or something even less likely.

s p-value has uniform distribution.



GOF # Model Selection

» Note above: no alternative hypothesis H,
» Different problem:

» Hy:F = flat vs Hy: F = linear

» — model selection
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Usually better tests: likelihood ratio test, F
tests, BIC etc.

» Easy to confuse: all GOF papers do power
studies, those need specific alternative.

» Our question: is F a good enough model for
data? We want to guard against any
alternative.




Frequentist vs Bayesian

Not again ...

Actually no, GOF equally important to both
(everybody has a likelihood)

Maybe more so for Bayesians, no non-
parametric methods.

But GOF is frequentist. Bayesian GOF would
need prior on space of probability
distributions.




Simple Example: Is the die fair?

Theory: die is fair (p; = 1/¢)
Experiment: roll die 1000 times

If die is fair one would expect 1000*1/6 = 167 1’s, 2’s
and so on

Data:

RN

187 168 161 147 176 161

» Is this a good fit?

p—



Most Famous Answer: Pearson X

Sir Karl Pearson (1900),

“On the criterion that a given system
of deviations from the probable in
the case of correlated system of
variables is such that it can be
reasonably supposed to have arisen
from random sampling’, Phil. Mag (5)
50, 157-175
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Uses as measure of deviations

XZ_ k (Oi_Ei)z
l

k: number of classes / categories / bins
0; : observed counts
E; : expected counts

Agreement is bad if X? is large

X2~x*(k — 1)
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187 16 161 147
E 167 167 167 167 167 167
(187 — 167)2 (161 — 167)2
2 _ —
Xe = 167 +..+ 167 = 5.72
Is 5.72 “large™

If die is fair and rolled 1000 times, how large
would X? typically be?
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So X2 has a chi square distribution with k-1 degrees of
freedom (k=number of categories/bins)

Here: 95" percentile of x2(5) is 11.07

So our X? =5.72 is not unusually large, die is
(reasonably) fair.

The derivation of the distribution of X? uses several
approximations, so this needs a sufficiently large
sample size. But how large does it have to be?

Famous answer: E; > 5 for all i

William G. Cochran The [chi-squared] test of goodness
of fit. Annals of Mathematical Statistics 1952; 25:315-
345.

Seems to have picked 5 for no particular reason. Later

Jesearch showed this is quite conservative. Test

- g€ works fine if E; > 5 for mosti and no E; < 1.
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https://en.wikipedia.org/wiki/Jerzy_Neyman
https://en.wikipedia.org/wiki/Egon_Pearson
https://en.wikipedia.org/wiki/Philosophical_Transactions_of_the_Royal_Society_of_London

Fisherian Significance Testing vs
Neyman-Pearson

Fisher’s question: does data agree with theory?

Neyman-Pearson’s question: should one reject the null
hypothesis in favor of some specific alternative?

Main advantage of Neyman-Pearson style test: can
decide which method is better (aka has a higher power)

Today’s procedure is a hybrid of both

GOF testing much closer to Fisherian significance
testing, except when we have a specific alternative in
mind, but then it’s not GOF!
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“All models are wrong but some

are useful”

» Box, G. E. P. (1979), "Robustness in the
strategy of scientific model building”, in
Launer, R. L.; Wilkinson, G. N. (eds.),

J J

pp. 201-256.

» In GOF testing the null hypothesis is almost
certainly wrong, but is it so wrong that we
reject it (at the given sample size)?

» If not it should be useful! What useful means
depends on the context. (for example testing
at 50 vs 30 levels).
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https://books.google.com/books?id=dabiBQAAQBAJ&pg=PA201
https://en.wikipedia.org/wiki/Academic_Press
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The Degree of Freedom Controversy

Not

Hy:F = Normal(0,1) (simple hypothesis)
but

Hy: F = Normal (composite hypothesis)

ldea: find estimates of parameters, use those.
Any change in test? Pearson said no.

In 1915 Greenwood and Yule publish an analysis of
a 2x2 table and note that there is a problem.

In 1922, 1924 and 1926 Sir Karl Fisher published
s ral papers showing that Pearson was wrong.

AR
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VariationSIoREE

Cressie-Read Wﬁ 3 0{( 92 ~_ 1}

Pearson (1 = 1) > (O*EE)}

log likelihood ratio (4 = 0) Q.ZOIOg(%)

Freeman-Tukey (1 = —1/2) 43 [JO - JE ]2

Neyman modified X> (1 = -2) > (OEJEF'

modified likelihood ratio (1 = -1) 2> Elog(£)

Question used to be: which converges fastest
to x??

But these days null distribution can be found
most easily using Monte Carlo simulation!

\
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Question today: Which method has highest power?

function(B=1e4) {
crit95<-¢(10.95, 10.97, 10.95, 11.08, 11.00)
E<-rep(1,6)/6*1000
TS.Sim<-matrix(0,B,5)
for(iin 1:B) {

O<-table(sample(1:6,size=1000,replace=T,

prob=c( ,1,1,1,1,1))

TS.Sim[i,1]<-sum( (O-E)A2 /E)
TS.Sim[i,2]1<-2*sum(O*log(O/E))
TS.Simli,3]1<-4*sum( (sqrt(O)-sqrt(E))A2)
TS.Simli,4]<-sum( (O-E)A2/0O)
TS.Sim[i,5]<-2*sum(E*log(E/O))

}

power<-rep(0,5)

for(i in 1:5) powerli]<- S
sum(TS.Sim[,i]>crit95[i])/B

power

}

Simulated loaded die has a slightly higher
probability for a “1”.

\

Method
Pearson
log likelihood ratio

Freeman-Tukey

Neyman modified

modified likelihood ratio

Power
55.47%
53.95%
53.33%
50.50%
52.26%
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Overfitting

Usual question: is our theory a good enough model
for the data?

We also should worry about: is our model better
than it should be?

» Qverfitting!

~ Occam’s Razor: Numqguam ponenda est
pluralitas sine necessitate

> Here: the best model is the most basic one that
works (aka fits the data)
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Continuous Data

Need to bin the data

In principle any binning is ok, as long as
expected counts are not to low

Two obvious questions:

1 What kind of bins?

2) How many bins?

23



What kind of bins?

Equi-distant vs Equi-probable

| |
-1 1
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Most textbooks suggest equi-probable is
better, but this isn’t really true.

One advantage: E=n/k >> 5 for all bins, no
need to adjust binning

Equi-probable bins can be found easily as
qguantiles of distribution or as quantiles of data

25



How many bins?

Many textbook answers:

D’Agostini and Stephens 2n?/>
Sturge’s Rule 1 + log,n

2
Mann and Wald 4[2(716;21)]1/5
And many more

But: really depends on case:
Example: Hy: X~U[0,1] vs H,: X~Linear
Optimal: k=2!

Formulas above were derived for the purpose of density estimation, but a
number of bins that is good for density estimation (aka histogram) need not
be good for gof testing.

My own studies show that a small number, say less than 10, independently
of n is usually best.
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EDF Methods

EDF: Empirical Distribution Function

~ - # of events < x
F) = 23 X)) = SR
i=1

F(x) = F(x) uniformly (Glivenko-Cantelli lemma)

Basic idea for test: o
/ D (F(mJ?F{:::}) b(z)dF(z)

D: distance measure on function space
reiglit function

L ]
. Q
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Theorem: (Probability Integral Transform)

Let X be a continuous random variable with
distribution function F, then the random
variable Y = F(X) has a uniform (0,1)
distribution.

Consequence: D is distribution free, aka does
not depend on F.

One table to rule them all!

Except this does not work if parameters are
estimated from data!
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Kolmogorov-Smirnov

KS = max{|F(x) = FG)|; x} =

j 1
max{ , ‘F(X(i)) >

l
—— FAa "

Kolmogorov A (1933). "Sulla
determinazione empirica di una

legge di distribuzione®. G. Ist. Ital.
Attuari. 4: 83-91.

Smirnov N (1948). "Table for
estimating the goodness of fit of
empirical distributions®. Annals of
g/lgichematical Statistics. 19: 279-




Many [ests:

Anderson-Darling

Anderson, T. W.; Darling, D. A. (1952). Asymptotlc theory of certain "goodness-of-fit" criteria based on stochastic processes”.
Annals of Mathematical Statistics. 23: 193-212.

Cramer-vonMises

Cramér, H. (1928). "On the Composition of Elementary Errors". Scandinavian Actuarial Journal. 1928 (1): 13-74.
doi:10.1080/03461238.1928.10416862.

von Mises, R. E. (1928). Wahrscheinlichkeit, Statistik und Wahrheit. Julius Springer.
Watson, G.S. (1961) "Goodness-Of-Fit Tests on a Circle®, ,48 (1/2),109-114
And more...

Modern theory based on convergence of F to Gaussian process

Method : Test Statistic

Anderson-Darling 7 ﬁ;‘:{’l F}LFI;, dF(z)  —n—Y ZlllogF(z;)+log(l— F(zy 1,1))]

2

Cramer-vonMises: j{ﬁ' (z) — F(z))*dF(z) > =t — F(z;]”

Watson: T F{Tt]L —n(F(z:) — —}



https://en.wikipedia.org/wiki/Biometrika

None of these allows estimation of parameters
except in some special cases:

Hy: X~Normal
Hubert Lilliefors (1967), "On the Ko/lmogorov-
Smirnov test for normality with mean and variance

unknown", Journal of the American Statistical
Association, Vol. 62. pp. 399-402.

Hy: X~Exponential

Hubert Lilliefors (1969), "On the Ko/lmogorov-
Smirnov test for the exponential distribution with
mean unknown'", Journal of the American Statistical
Association, Vol. 64 . pp. 387-389.

Butlthen again, just find null distribution via Monte
Carlo!
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Null Distribution via Simulation

» Estimate parameters from data (and you can
use any method you like!) — 8,

» Find test statistic Tp for data, using F(.|8p).

» Simulate new data set from F(.|8p), find its
parameter estimates 6, and its test statistic
T, using F(.]6,)

» Do this (say) 1000 times.

» P-value = % {T;> Tp} (if large T is bad)

» Parametric bootstrap
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Methods basec

Plot quantile
of F vs sa
quantiles

Probability Plots

If Fis co
model, p
form a st
line

34



Turn this into a formal test

Again Probability Integral Transform:
X~F - F(X)~U[0,1]

(Uy,..,U,) iid U[0,1]
Order Statistic Uy <--. < Ugy
Uwy~Beta(k,n —k + 1)

Find pointwise confidence intervals from quantiles of Beta
distribution

Turn into simultaneous confidence band by adjusting
nominal confidence level via MC.

35



Sivan Aldor-Noima, Lawrence D.
Brown, Andreas Buja , Robert £
Stine and Wolfgang Rolke
Power to See: A New

Test of Normality', T
American Statisticia

Vol 67/4

Andreas Buja, W«
“Calibration for

(Re) Sampling
Simultaneous In
Applications to f
Estimation and Fi
Data’, Technical R
Wharton School of
Univ. of Pennsylvanie

R routines:
http://academic.uprm.edu/w
ke/research/publications.htm




Smooth Tests

Old idea - goes back to Neyman (1937) - but
with some recent improvements.

Basic idea: embed density f in family of
densities {g;} indexed by some parameter
vector © = (064,..,0;) which includes true density
for some k and such that

H,:true densityis f & Hy: © =0
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k
=1

{h;} should be orthonormal family of
functions, i.e.

J-':I:' h i (I ) h j (.1.‘.’ ) dx = 51}

—0

optimal choice of {h;} depends on f, so
different tests for different null hypotheses.

\
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Typical choices for {h;}:
Legendre Polynomials, Fourier series,
hi(x)=v2 cos(jnx), Haar functions, ....

Basics of the test:

Uy = — 2., hi(X)

Jn
. k .
Iy = Zj=1 bf
Tk ~a xi

Interesting feature: partial tests (064,..,0,,) = 0 for
m<k can give insight into HOW null is wrong.
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Zhang’s Tests

Not so well known, but often have good power.

. - Yogd =2 L i Ly n—ity
Kms \V T nFy (X)) TR {1 — Fo(X()}

g _ Z llgFZ (fi)) log{1 — f't]l(X(s))}]
R Fo(X) ™ ’
Z“;;[l“g{ {n%w%)l}]

Jin Zhang, “Powerful Goodness-of-Fit Tests Based on the Likelihood Ratio”, Journal of
the Royal Statistical Society. Series B (Statistical Methodology), Vol. 64,No. 2 (2002),
pp. 281-294

siibutions of all three test statistics need to be found via MC.
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And many more...

» Tests based on moments

» Tests specific for a distribution (Normal:
more than 30 tests)

» A good place to start: “Comparing
Distributions’, Olivier Thais, Springer
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So, how do they do?

H, : F =U[0,1] ; n=1000, a = 0.05
In all cases highest power =80-90%

42



It’s a mess!

Any one method
might have good
power in one case
and bad power in
another.

Chis-squarGassss
low numbernnENS
better but NOE
great.

\ i



“Simultaneous Goodness-of-Fit Testing’, Rolke
(2020): 21 such studies

( ).
Most methods sometimes good, sometimes bad.

Chi-square and KS: never very good.

Chi-square with large number of bins (>>10):
horrible!

AD and Zhang’s Z, generally quite good.
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https://arxiv.org/abs/2007.04727

An obvious ldea:

Do several tests!

If none of them reject the model, it can’t be
that bad.

But: look-elsewhere-effect
Take a couple of looks effect?

— simultaneous inference

45



Say we perform k tests, each at the « level, and

assume model is good. Let T; be test i rejects
null, then:

P(at least one test rejects null) =
1 —Prob(Tf;i=1,..,k)

Easy if tests are independent:

1 —Prob(T5;i=1,..,k) =
1 — [[Prob(T{)=
1-[(1-0) =1-(1 - )"

an| correction
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But our tests are not independent, they all use
the same data.

We can still find correction using simulation!
Example: H,: X~U[0,1], use 9 tests:

3_
Which
075~
2_
> 0.50-
—  MC adjustment
1 0.25-
Mo Adjustrnent
o- & aoo-+
0.00 ':'25 I:'EI:I III. 5 I:I':-E'EEI 5[[I T"E! IZII:I

p value

1.0- Sk \LTE

- (AL

000 025 05 075 1.00
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Results over 21 Studies
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How to run this test:

» R package simgof (available from me)

library(simgof)
¥ <- rnorm(l1000, 100, Z20)
pnull <- function(x, param) pnorm(x, param[l], param([2])
rnull <- function(n, param) rnorm(x, param[l], param([2])
gnull <- function(x, param) qnorm(x, param[l], param([2])
estimate <- function(x) c(mean(x), sd(x))
simgof.test (x, pnull, rnull, gnull, TRUE, estimate)
RC KS AD CdM W ZA ZK ZC

0.7572 0.4220 0.e020 0.5450 0.5070 0.8010 0.9110 0.7060
I

VvV VV V.V V V

™




https://drrolke.shinyapps.io/sgoftest

Simultaneous Goodness-of-Fit Test

Enter all the information required and then hit Go. For a detailed explanation of the app go here

‘Go

Datais ...

Upload file with data

Browse., normaldata.bct

General Methods

" M e

Normal Distribution

pcc W B Nur

Chisquare Methods

[(Jo¢ [ Jousisie [ JoualPred

Continuous

/]

Upload file with Routines

Browse. normalC.est.txt

Upload complete:

Uniform

Dumf

Sample sizeis ..
fixed

Method p value

RC 0.6386
KS 02032
AD 03115
W 03504
ppec 03516
ZK 03606
caM 03636
SW 04106
sNor 04158
A 04628
0541

B 00223

Exponential

O

Number of Simulation Runs
10000

Parameter Estimate(s):

100.047
,0.998
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Tests for Multidimensional Data

In principle very useful, but:
Curse of Dimensionality (R. Bellman)

Example: Hy: (Xq,..,X5)~U[0,1]¢

We want to do a x? test and we want 10 bins in each dimension.

What n do we need to get E > 57

1:E=",,=25->n=50
2:E=”/10255—>nz 500
3:E="/,5=5->n=5000

d
d
d

Some other tests not so extreme, but all of them suffer to some
degree from the curse.
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High-dimensional space is strange!

L

3 X2 (n)

X5, X5 ~ N(0,1), independent i1 .
= (21,..,2p) e R ED] ~ \‘-E[ D2] =n
D= V-"’:rf—l—. .+z# Euclidean distance to origin P(|D— \/n| >t) < 2exp{—ct® } Hoeffding bound

25-

0.0-

2.5~

52



First: Standardize!

-
Usual: od(a)

z—Med(z)
IQR(z)
0-1: ma.x'(a:) —min(z)

Robust:

(IQR = Inter Quartile Range = P75 — Ps)

Some methods do this
automatically.

Destroys any analytic
null distribution.



¥* Test: How to bin?




Tests based on Spacings

Under null
hypothesis
transformed
spacings have
uniform
distributions.

Closely related to
hearest-neighbors
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perspheres in R¢

Breiman. L (1983) Sums of
arest neighbor

corems and
Ann. Prob. 11,

dness of Fit

Sis 19, 201-224.
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More Nearest Neighbor

llya Narsky (2003), Estimation of Goodness-of-Fit in
Multidimensional Analysis Using Distance to Nearest
Neighbor, arXiv:physics/0306171

Presented at Phystat 2003 - SLAC
Based on Rosenblatt transform and Monte Carlo.

Rosenblatt transform imposes artificial order on
variables. In d dimensions there are d! ways to go.
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Tests based on EDF - KS

Analytic derivation of null distribution also based
on Rosenblatt transform, same issue of order.

These days test statistic can be found directly, but
needs a lot of calculations. (max not necessarily at
data points as in 1D).

R?: Sample size n— n?/4 function evaluations

Simple Idea: Just look at data points — fKS (under
current investigation..)
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Aslan-Zech Energy tests

Data: x4,..,x,
Data simulated from F : t,,..,t,,

_ —z R(I x; — % 1) ——2 R(IE; — x; 1)

1<j
R correlation function:
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Neyman smooth tests

k
gr(z; 6, 8) = C(0,B) EXP{ Z 9i9jhz'($; 5)hj($§ B) }f(m; B)

ij=1

In principle easy, but:

Choice of k?

Same basis functions in different
dimensions?

For good power basis functions need to
“match” F.
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Empirical Characteristic Function

Characteristic function:

d)(tl, ) u ) td) = E[exp{it1X1 +.. +lthd}]
Empirical characteristic function:

1 . .
b, (ty,,..,t ) = 52 exp{it{xq;+.. Fitgxy;}

Test based on the difference.

But: what d? what ¢4,..,t;?

Yanqgin Fan, (1997), Goodness—-of-Fit Tests for a
Multivariate Distribution by the Empirical Characteristic
Function, Journal of Multivariate Analysis, 62, 36-63
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Power Studies (Very Preliminary..,
thanks Anderson)

Sample Size 100, 10000 runs for null
distribution, 1000 runs for power

(o) Lo 2]) = (%) s 5])
¥ ((o) Lo 1) =¥((o)[> 1)
& ((0):o 1)) =7 ((60) Lot 7))
Cy : U[0,1] x U[0,1] vs. z = 0.55z

Cs : U[0,1] x U[0,1] vs. z = 0.4zy




75-

50-

25-

AZ

KS

ECF

AD

fKS

Chi-Prob

Chi-Size

Chi-Contour
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General Comments:

GOF tests beyond 2 or 3 dimensions unlikely to
be very powerful.

At the very least will require gigantic data sets
to get reasonable power.

Still a wide-open problem!
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Special Cases

Often data has special features that need to be
taken into account

Example: High Energy Physics
1 Data is truncated

2) Sample size is random

3) Data is binned
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Truncated Data

Data in High Energy Physics is always truncated
to a finite interval.

Care needs to be taken with normalization (aka

[-. f)dx = 1)

Statisticians usually will assume this is done
automatically and at all times.
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Sample Size

In HEP experiments sample size is not fixed a-
priori but is a consequence of the run time

nN~Poisson(A)
If nis fixed: (Ny,.., N;,)~Multinomial(n,p4,..,px)

But if n is Poisson

N;~Poisson(Ap;) and N;,.., N, independent!
(Theory of Marked Poisson processes)
Consequence: X?~y?(k —m) (not k-m-1)
Not an issue if null distribution is found via MC
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Binned Data

Data in HEP is often already binned for various
reasons, for example detector resolution

Still need to consider rebining for chi square

tests.

How about Kolmogorov-Smirnov?

i
——F(Xp)|, |F(X<i)) -

i —1
n

KS = max{
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. bi+b;j . .
Obvious answer: x; = = 2“’1 midpoint

Better answer: spread out N; points in (b;, b;41)
uniformly.

Best answer: spread out N; points in (b;, b;;1)
according to F.

Can be quite slow (requires finding quantiles of
F, solve many non-linear equations), in practice
spreading them uniformly almost as good.
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Conclusions

» GOF testing should be part of (most) statistical
analysis.

» Any one test can have low power, so do several.

» Chi-square with large number of bins has very
low power.

» Tests for multi-dimensional distributions are not
great and likely has low power for much more
than two dimensions.

» THANKS!
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